Глаз человека и свойства зрения

Содержание
  1. Строение и свойства глаза
  2. Близорукость
  3. Дальнозоркость
  4. Аметропия
  5. Астигматизм
  6. Анатомия глаза человека: строение и функции. Просто и доступно
  7. Анатомия глаза человека
  8. Строение глаза: анатомия зрительного механизма
  9. Покровная оболочка — роговица
  10. Функции радужки в анатомии и физиологии глаза
  11. Хрусталик
  12. Стекловидное тело
  13. Роль сетчатки в строении глаза
  14. Склера
  15. Физиология зрения
  16. Строение глаза человека с нарушением зрения
  17. Строение глаза, зрительные функции, дефекты зрения
  18. За счет чего же движется глаз ?
  19. Зрительные функции
  20. Дефекты зрения
  21. Строение и функции глаза
  22. Основные функции глаза
  23. Строение глаза
  24. Полезно почитать
  25. Глаз как оптическая система. Оптические приборы. Строение и свойства глаза
  26. Роговица
  27. Камерная влага
  28. Хрусталик глаза
  29. Стекловидное тело
  30. Оптические приборы, вооружающие глаз
  31. Что не входит в состав оптической системы глаза?
  32. Преломление света
  33. Заключение

Строение и свойства глаза

Глаз человека и свойства зрения
Следи за собой! Гимнастика для глаз Глаза и зрение

Глаз состоит из глазного яблока диаметром 22–24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.

Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.

Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6–8 градусов.

Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения.

Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения.

В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.

В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек.

Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким.

Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.

На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях.

Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются.

При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

С возрастом способность глаза к аккомодации уменьшается.

В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25–30 см.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток.

Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50–60 минут пребывания в темноте.

Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8–10 минут чувство ослепления прекращается, и глаз снова видит.

Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1–1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали.

Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45–50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально.

Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки.

Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света.

Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

Близорукость

При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

Дальняя точка глаза

Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

Дальняя точка глаза

Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

Дальнозоркость

При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

Дальняя точка глаза

Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

Дальняя точка глаза

При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе.

При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено.

При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

Аметропия

Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

Астигматизм

При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения.

Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать.

На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.

Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы.

Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями.

Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.

Источник: http://mhlife.ru/prevention/hygiene/eyes.html

Анатомия глаза человека: строение и функции. Просто и доступно

Глаз человека и свойства зрения

Зрение — один из важнейших механизмов в восприятии человеком окружающего мира. С помощью визуальной оценки человек получает порядка 90 % информации, поступающей извне.

Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания.

Тем не менее ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа.

Как устроена сложнейшая оптическая система человеческого глаза? На чём основан механизм визуальной оценки и какие этапы он включает? Что происходит с глазом при потере зрения? Обзорная статья поможет разобраться в этих вопросах.

Анатомия глаза человека

Зрительный анализатор включает 3 ключевых компонента:

  • периферический, представленный непосредственно глазным яблоком и прилегающими тканями;
  • проводниковый, состоящий из волокон зрительного нерва;
  • центральный, сосредоточенный в коре головного мозга, где происходит формирование и оценка зрительного образа.

Рассмотрим строение глазного яблока, чтобы понять, какой путь проходит увиденная картинка и от чего зависит её восприятие.

анатомия глаза

Строение глаза: анатомия зрительного механизма

От правильного строения глазного яблока напрямую зависит, какой будет увиденная картинка, какая информация поступит в клетки головного мозга и каким образом она будет обработана.

В норме этот орган выглядит в форме шара диаметром 24–25 мм (у взрослого человека). Внутри него находятся ткани и структуры, благодаря которым картинка проецируется и передается на участок мозга, способный обработать полученную информацию.

Структуры глаза включают несколько различных анатомических единиц, которые мы и рассмотрим.

Покровная оболочка — роговица

Роговица представляет собой особый покров, защищающий наружную часть глаза. В норме она абсолютно прозрачна и однородна, поскольку выполняет функцию считывания информации.

Через неё проходят световые лучи, благодаря которым человек может воспринимать трёхмерное изображение. Роговица бескровна, поскольку не содержит ни одного кровеносного сосуда.

Она состоит из 6 различных слоёв, каждый из которых несёт определённую функцию:

  • Эпителиальный слой. Клетки эпителия находятся на наружной поверхности роговицы. Они регулируют количество влаги в глазу, которая поступает из слёзных желёз и насыщается кислородом за счёт слёзной плёнки. Микрочастицы — пыль, мусор и прочее — при попадании в глаз могут легко нарушить целостность роговицы. Впрочем, этот дефект, если он не затронул более глубокие слои, не представляет опасности для здоровья глаза, поскольку эпителиальные клетки быстро и относительно безболезненно восстанавливаются.
  • Боуменова мембрана. Этот слой также относится к поверхностным, поскольку располагается сразу за эпителиальным. Он, в отличие от эпителия, не способен восстанавливаться, поэтому его травмы неизменно приводят к ухудшению зрения. Мембрана отвечает за питание роговицы и участвует в обменных процессах, протекающих в клетках.
  • Строма. Этот довольно объёмный слой состоит из волокон коллагена, которые заполняют собой пространство.
  • Десцеметова мембрана. Тоненькая мембранка на границе стромы отделяет её от эндотелиальной массы.
  • Эндотелиальный слой. Эндотелий обеспечивает идеальную пропускную способность роговицы за счёт удаления лишней жидкости из роговичного слоя. Она плохо восстанавливается, поэтому с возрастом становится менее плотной и функциональной. В норме плотность эндотелия составляет от 3,5 до 1,5 тысяч клеток на 1 мм2 в зависимости от возраста. Если этот показатель падает ниже 800 клеток, у человека может развиться отёк роговицы, в результате которого резко снижается чёткость зрения. Такое поражение — естественный итог глубокой травмы или серьёзного воспалительного заболевания глаз.
  • Слёзная плёнка. Последний роговичный слой отвечает за санацию, увлажнение и смягчение глаз. Слёзная жидкость, поступающая в роговицу, смывает микрочастички пыли, загрязнения и улучшает проницаемость кислорода.

Функции радужки в анатомии и физиологии глаза

За передней камерой глаза, заполненной жидкостью, располагается радужная оболочка.

От её пигментации зависит цвет глаз человека: минимальное содержание пигмента обусловливает голубой цвет радужки, среднее значение характерно для зелёных глаз, а максимальный процент присущ кареглазым и черноглазым людям.

Именно поэтому большая часть деток рождается голубоглазыми — у них синтез пигмента ещё не отрегулирован, поэтому радужка чаще всего светлая. С возрастом эта характеристика меняется, и глазки становятся темнее.

Анатомическое строение радужки представлено мышечными волокнами. Они молниеносно сокращаются и расслабляются, регулируя проникающий световой поток и изменяя размер пропускного канальца.

В самом центе радужки располагается зрачок, который под действием мышц изменяет диаметр в зависимости от степени освещённости: чем больше световых лучей попадает на поверхность глаза, тем уже становится просвет зрачка. Этот механизм может нарушаться под действием медицинских препаратов или в результате болезни.

Краткосрочное изменение реакции зрачка на свет помогает диагностировать состояние глубоких слоёв глазного яблока, однако длительная дисфункция может привести к нарушению зрительного восприятия.

Хрусталик

За фокусировку и чёткость зрения отвечает хрусталик. Эта структура представлена двояковыпуклой линзой с прозрачными стенками, которая удерживается ресничным пояском. Благодаря выраженной эластичности хрусталик может практически моментально менять форму, регулируя чёткость зрения вдали и вблизи.

Чтобы увиденная картинка получалась корректной, хрусталик должен быть абсолютно прозрачным, однако с возрастом или в результате болезни линзы могут мутнеть, вызывая развитие катаракты и, как следствие, нечёткость зрения.

Возможности современной медицины позволяют заменить человеческий хрусталик имплантом с полным восстановлением функционала глазного яблока.

Стекловидное тело

Поддерживать шарообразную форму глазного яблока помогает стекловидное тело. Оно заполняет собой свободное пространство задней области и выполняет компенсаторную функцию.

Благодаря плотной структуре геля стекловидное тело регулирует перепады внутриглазного давления, нивелируя негативные последствия его скачков.

Кроме того, прозрачные стенки ретранслируют световые лучи непосредственно на сетчатку, благодаря чему складывается полная картинка увиденного.

Роль сетчатки в строении глаза

Сетчатка — одна из самых сложных и функциональных структур глазного яблока. Получая от поверхностных слоёв световые пучки, она преобразует эту энергию в электрическую и передаёт импульсы по нервным волокнам непосредственно в мозговой отдел зрения. Этот процесс обеспечивается благодаря слаженной работе фоторецепторов — палочек и колбочек:

  1. Колбочки — это рецепторы детального восприятия. Чтобы они могли воспринимать световые лучи, освещение должно быть достаточным. Благодаря этому глаз может различать оттенки и полутона, видеть мелкие детали и элементы.
  2. Палочки относятся к группе рецепторов повышенной чувствительности. Они помогают глазу видеть картинку в неудобных условиях: при недостаточном освещении или не в фокусе, то есть на периферии. Именно они поддерживают функцию бокового зрения, обеспечивая человеку панорамный обзор.

Склера

Тыльная оболочка глазного яблока, обращённая к глазнице, называется склерой. Она плотнее роговицы, поскольку отвечает за перемещение и поддержание формы глаза.

Склера непрозрачна — она не пропускает световые лучи, полностью ограждая орган с внутренней стороны. Здесь сосредоточена часть сосудов, питающих глаз, а также нервные окончания.

К наружной поверхности склеры прикреплены 6 глазодвигательных мышц, регулирующих положение глазного яблока в глазнице.

На поверхности склеры расположен сосудистый слой, обеспечивающий поступление крови к глазу.

Анатомия этого слоя несовершенна: здесь нет нервных окончаний, которые могли бы сигнализировать о появлении дисфункции и прочих отклонений.

Именно поэтому офтальмологи рекомендуют обследовать глазное дно не реже 1 раза в год — это позволит выявить патологию на ранних стадиях и избежать непоправимого нарушения зрения.

Физиология зрения

Чтобы обеспечить механизм зрительного восприятия, одного глазного яблока недостаточно: анатомия глаза включает ещё и проводники, которые передают полученную информацию в головной мозг для расшифровки и анализа. Эту функцию выполняют нервные волокна.

Световые лучи, отражаясь от предметов, попадают на поверхность глаза, проникают через зрачок, фокусируясь в хрусталике.

В зависимости от расстояния до обозримой картинки хрусталик с помощью цилиарного мышечного кольца меняет радиус кривизны: при оценке удалённых объектов он становится более плоским, а дли рассмотрения предметов вблизи — наоборот, выпуклым.

Этот процесс называется аккомодацией. Он обеспечивает изменение преломляющей силы и места фокуса, благодаря чему световые потоки интегрируются непосредственно на сетчатке.

В фоторецепторах сетчатки — палочках и колбочках — световая энергия трансформируется в электрическую, и в таком виде её поток передаётся нейронам зрительного нерва. По его волокнам возбуждающие импульсы перемещаются в зрительный отдел коры головного мозга, где информация считывается и анализируется. Такой механизм обеспечивает получение визуальных данных из окружающего мира.

Строение глаза человека с нарушением зрения

Согласно статистике, более половины взрослого населения сталкиваются с нарушением зрения. Наиболее распространёнными проблемами являются дальнозоркость, близорукость и сочетание этих патологий. Основной причиной этих заболеваний служат различные патологии в нормальной анатомии глаза.

При дальнозоркости человек плохо видит предметы, расположенные в непосредственной близости, однако может различить мельчайшие детали удалённой картинки. Дальняя острота зрения — бессменный спутник возрастных изменений, поскольку в большинстве случаев она начинает развиваться после 45-50 лет и постепенно усиливается. Причин этому может быть много:

  • укорочение глазного яблока, при котором изображение проецируется не на сетчатке, а за ней;
  • плоская роговица, не способная к регулировке преломляющей силы;
  • смещение хрусталика в глазу, приводящее к неправильной фокусировке;
  • уменьшение размеров хрусталика и, как следствие, некорректная передача световых потоков на сетчатку.

В отличие от дальнозоркости, при миопии человек детально различает картинку вблизи, однако дальние объекты видит расплывчато. Такая патология чаще имеет наследственные причины и развивается у детей школьного возраста, когда глаз испытывает нагрузки во время интенсивного обучения.

При таком нарушении зрения анатомия глаза также изменяется: размер яблока увеличивается, и изображение фокусируется перед сетчаткой, не попадая на её поверхность.

Ещё одной причиной близорукости может служить излишняя кривизна роговицы, из-за чего световые лучи преломляются слишком интенсивно.

Нередки ситуации, когда признаки дальнозоркости и близорукости сочетаются. В этом случае изменение строения глаза затрагивают и роговицу, и хрусталик. Низкая аккомодация не позволяет человеку в полной мере видеть картинку, что свидетельствует о развитии астигматизма.

Современная медицина позволяет исправить большинство проблем, связанных с нарушением зрения, однако куда проще и логичнее заранее побеспокоиться о состоянии глаз.

Бережное отношение к органу зрения, регулярная гимнастика для глаз и своевременное обследование у офтальмолога помогут избежать множества проблем, а значит, сохранить идеальное зрение на долгие годы.

Источник: https://www.oum.ru/literature/anatomiya-cheloveka/anatomiya-glaza-stroenie-i-funktsii/

Строение глаза, зрительные функции, дефекты зрения

Глаз человека и свойства зрения

Первую сою статью я начну с того, что расскажу вам о зрительном органе нашего организма это глаз.

Глаз – орган зрительной системы человека, обладающий способностью воспринимать свет и обеспечивать функцию зрения. У человека через глаз поступает 90% информации из окружающего мира.

Роговица – это природная линза, это передняя, наиболее выпуклая прозрачная часть глазного яблока. Роговица не содержит кровеносных сосудов, но имеет нервные окончания. Помимо защитной функции, она также выполняет функцию преломления света.

Склера – задняя, непрозрачная, белесоватая внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся глазодвигательные мышцы.

Радужная оболочка (радужка) – это «живая» диафрагма. Находится между роговицей и хрусталиком. Имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело, а внутренним ограничивает отверстие зрачка.

Хрусталик («живая линза») – прозрачное эластичное образование в капсуле, имеющее форму двояковыпуклой линзы. Хрусталик обладает интересной особенностью – с помощью связок и мышц вокруг, он может изменять свою кривизну, что, в свою очередь, изменяет направление световых лучей.

Цилиарная мышца – внутренняя парная мышца глаза, которая обеспечивает аккомодацию. С помощью цилиарной мышцы происходит изменение кривизны хрусталика и человек может четко видеть предметы на различных расстояниях.

Стекловидное тело – гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза, за хрусталиком. Поддерживает форму глазного яблока, принимает участие в преломлении световых лучей.

Сетчатка – рецепторная часть зрительного анализатора. Здесь происходят восприятие света и передача информации в центральную нервную систему.

В сетчатке мы можем найти главные для нас элементы:

· Фоторецепторы – палочки и колбочки. Представляют собой нейроны с отростками разной формы. Палочки отвечают за сумеречное и ночное зрение, колбочки – за остроту зрения и цветовосприятие (дневное зрение).

· Диск выхода зрительного нерва – место выхода из глаза зрительного нерва. Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. По зрительному нерву импульсы попадают в наш головной мозг, который и формирует изображение.

· Жёлтое пятно (макула) – находится на сетчатке, как правило, напротив зрачка. При нормальной работе глаза лучи света должны фокусироваться четко на макуле.

За счет чего же движется глаз ?

Он самый подвижный из всех органов человеческого организма.Различные движения глаза, повороты в стороны, вверх, вниз, обеспечивают глазодвигательные мышцы, расположенные в глазнице.Всего их 6: 4 прямые мышцы крепятся к передней части склеры и 2 косые, прикрепляются к задней части склеры.

Зрительные функции

Зрение — это основная функция глаз, которая складывается из нескольких этапов.

Свет, который отражается от предметов, движется в глаз. Далее он проходит и преломляется через роговицу, хрусталик, стекловидное тело и попадает на сетчатку.

Бинокулярное зрение – это способность зрительной системы воспринимать изображения одновременно двумя глазами, как единый объёмный образ.

Нормальное бинокулярное зрение возможно при определённых условиях:

· согласованная работа всех глазодвигательных мышц, обеспечивающая параллельное положение глазных яблок при взгляде вдаль и соответствующее сведение зрительных осей (конвергенция) при взгляде вблизи, а также правильные ассоциированные движения глаз в направлении рассматриваемого объекта.

· расположение глаз в одной фронтальной и горизонтальной плоскости.

· острота зрения обоих глаз не менее 0,3-0,4, т.е. достаточная для формирования чёткого изображения на сетчатке.

равные величины изображений на сетчатке обоих глаз (при анизометропии до 2,0 Дптр).

Анизометропия – это когда у человека глаза имеют разную рефракцию, например, левый -2.0 Дптр, а правый -1.5 Дптр. В таком примере анизометропия составит 0,5 Дптр.

Конвергенция и дивергенция.

При рассматривании предметов, глаза человека движутся координированно. Такие движения глаз называются содружественными.

При рассматривании близко расположенных предметов зрительные оси глаз сближаются (сводятся) – этот процесс называется конвергенцией.

При рассматривании предметов вдалеке, положение зрительных осей приближается к параллельному – данное разведение осей называется дивергенция.

Аккомодация.

За счет изменения формы хрусталика происходит фокусировка изображения. Хрусталик меняет кривизну в зависимости от расстояния между глазом и предметом (аккомодация глаза).

Аккомодация – это способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза.

Количественно аккомодацию характеризуют две величины: длина (расстояние между ближайшей и дальнейшей точками ясного зрения) и объём (разница в показателях рефракции глаз (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения).

С возрастом, волокна хрусталика уплотняются, и эластичность уменьшается, вследствие чего способность к аккомодации снижается.

Полезрения – пространство, воспринимаемое глазом при неподвижном взгляде. Это пространство и по горизонтали, и по вертикали!

Цветоощущение – способность человека различать цвет видимых объектов (дневное видение). За эту функцию отвечают колбочки, расположенные в сетчатке.

Светоощущение – это способность зрительного анализатора воспринимать свет и различать степени его яркости (ночное видение). Это функция, за которую отвечают палочки, расположенные в сетчатке.

Светоадаптация – это способность глаза проявлять световую чувствительность при различной освещённости. Принято различать:

· световуюадаптацию, которая протекает в течение первых секунд, затем замедляется и заканчивается к концу 1-й минуты, но может увеличиваться до 3 – 5 минут в зависимости от яркости светового потока, после чего светочувствительность глаза уже не увеличивается;

темновуюадаптацию – изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным.

Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.

Острота зрения – это способность глаза распознавать минимальные по размеру объекты на расстоянии более 5 метров. Она, в первую очередь, зависит от правильного соотношения оптической силы глаза к его длине.

Дефекты зрения

Миопия или близорукость – дефект зрения, при котором изображение формируется не на сетчатке, а перед ней. Коррекция миопии осуществляется рассеивающими (отрицательными) линзами.

Гиперметропия или дальнозоркость – дефект зрения, при котором изображение формируется за сетчаткой. Коррекция гиперметропии осуществляется собирающими (положительными) линзами.

Астигматизм – дефект зрения, возникающий вследствие неправильной (не сферичной) формы роговицы (реже – хрусталика). Коррекция осуществляется цилиндрическими очковыми линзами.

Пресбиопия – возрастное ослабление аккомодации глаза.

Коррекция, как правило, осуществляется офисными или прогрессивными линзами (самый удобный и современный способ). Как уже говорили выше, с возрастом волокна хрусталика уплотняются, а эластичность уменьшается, вследствие чего снижается способность к аккомодации.

P.S.

Материалы взяты из личной библиотеки.

Ставьте лайки и ждите новых статей про оптику.

Источник: https://zen.yandex.ru/media/id/5cbf467555863600b3c2cb89/5cbf488088da1e00b560a0f7

Строение и функции глаза

Глаз человека и свойства зрения

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаз может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

Основные функции глаза

  • оптическая система, проецирующая изображение;
  • система, воспринимающая и «кодирующая» полученную информацию для головного мозга;
  • «обслуживающая» система жизнеобеспечения.

Строение глаза

Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.

Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются.

Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много).

Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т. е. фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение.

Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета.

Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур.

При заболеваниях сетчатки очень часто вовлекается в патологический процесс.

В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Полезно почитать

Общие вопросы о лечении в клинике

Источник: https://excimerclinic.ru/press/stroenieglaza/

Глаз как оптическая система. Оптические приборы. Строение и свойства глаза

Глаз человека и свойства зрения

  • 31 Октября, 2018
  • Офтальмология
  • Савельева Виктория

В статье рассмотрим оптический прибор — глаз как оптическую систему.

Человеческий орган зрения — это особый мир, в котором есть все: солнце, цвет, люди, животные. Само анатомическое строение глаза настолько удивительно и сложно, что до сих пор науке неизвестны все нюансы функционирования зрения.

Весьма интересен вопрос о том, что включает в себя эта оптическая система и как она устроена.

Для того чтобы световой луч мог достичь своей цели, ему необходимо пройти четыре среды, в которых он преломляется, а информация в ходе этого процесса передается в мозг.

Оптическая система глаз включает роговицу, хрусталик, камерную влагу и стекловидное тело. Все эти структуры являются линзами, которые также имеют свое строение и особые свойства. Но поскольку характеристики сред различны у каждой из них, то и показатель светового преломления различен.

В норме эта особенность природных линз способна обеспечить человеку идеальные зрительные функции. Однако любые физиологические или патологические изменения в организме могут существенно воздействовать на эту способность. Глаз человека имеет форму почти правильной сферы.

Различные патологии видоизменяют его форму в вертикальный или горизонтальный эллипс, что значительно влияет на фокусировку и остроту зрения.

Рассмотрим подробнее глаз как оптическую систему и оптический прибор.

Роговица

Рефракция глаза и оптическая система начинаются с роговицы, которая является преломляющей линзой, выполняющей, помимо основных функций, защитные. Строение органа можно сравнивать с фотоаппаратом. В данном случае роговица – это его объектив.

Световые пучки на ее передней поверхности преломляются. Роговицу, при подробном рассмотрении, составляет пять слоев, что способствует поддержанию уровня ее прозрачности.

Здоровая линза — круглая, блестящая, видимых кровеносных сосудов на ней не должно наблюдаться.

Камерная влага

Оптическая система глаз включает в себя важную биологическую среду — влагу. Это вязкая бесцветная жидкость, заполняющая заднюю и переднюю глазные камеры.

Каждый день вырабатывается новая порция такой жидкости, а отработанный объем через шлеммов канал поступает в кровоток, после чего выводится из организма.

Камерная влага, кроме преломляющей функции, имеет еще и питательную, способствующую насыщению всех элементов глаза аминокислотами. Затрудненный выход ее из камеры влечет возникновение глаукомы.

Хрусталик глаза

Оптическая система глаз снабжена преломляющим элементом, выполняющим функцию рефракции, – это хрусталик. Его часто рассматривают как самостоятельный орган, довольно сложный по строению и очень важный по функциям.

Хрусталик глаза является полутвердой субстанцией без сосудов. Он располагается сразу за радужной оболочкой и передает четкое отображение увиденной картинки в рамки желтого пятна на сетчатку.

Содержит несколько слоев и капсульную сумку, которая может утолщаться и провоцировать помутнение.

Стекловидное тело

В оптическую систему глаза входит стекловидное тело, которое ее фактически замыкает. Оно обладает множеством важных функций. Его наличие позволяет лучу проходить путь от хрусталика, который локализуется в вязкой жидкости тела, к сетчатке. Не все воспринимают глаз как оптическую систему.

Оптические приборы, вооружающие глаз

Человеческий глаз, несмотря на природное совершенство, по своим свойствам далек от идеальных универсальных оптических приборов.

Поэтому необходимо использовать оптику, вооружающую человеческий глаз новыми способностями.

При рассмотрении различных приборов следует помнить, что в каждом случае они и орган зрения образуют единую оптическую систему, важнейшим элементом которой считается хрусталик.

Если говорить о глазе как об оптическом приборе в физике, он в целом помогает получить изображение того или иного предмета на сетчатке, и кажущаяся его величина оценивается человеком по величине этого изображения.

Особенностью оптической системы, которая включает в свой состав глаза, является то, что параметры такой системы могут изменяться благодаря изменению фокусного расстояния хрусталика при аккомодации. Подобные соображения позволяют с легкостью изучить действие увеличительной лупы, которая представляет собой обычную выпуклую линзу.

Такими же, только более сложными по строению и функционированию приборами являются микроскоп, телескоп и т. д.

Что не входит в состав оптической системы глаза?

В ее структуру не входят:

  1. Склера. Роговица прозрачная, пропускает свет. Невидимая часть внешней оболочки глаза белая, которую можно сравнить с яичным белком. Она выполняет ограничительную и защитную функции.
  2. Радужка. Эта часть глаза является участком сосудистой оболочки, причем радужка полностью лишена сосудов. Это единственная структура человеческого организма, питание которого осуществляется без вмешательства кровеносной системы. В центре радужной цветной оболочки локализуется зрачок, который под воздействием света может расширяться и сужаться. Эта особенность нужна для нормального зрения, поскольку обеспечивает прохождение световых лучей идеального диаметра.
  3. Цилиарное тело, которое представляет собой соединительное звено между хориоидеей и задней поверхностью радужного покрова. Цилиарное тело содержит отростки, которые осуществляют весьма важные функции. Во-первых, они имеют способность поддерживать хрусталик в подвешенном состоянии, во-вторых, вырабатывают внутриглазную жидкость.
  4. Сетчатка — самый сложный, элемент органа зрения, имеющий много слоев. Она является природным сенсором, который является периферийным участком анализатора. Именно в этой структуре происходит восприятие света и цвета. Сетчатка очень чувствительная и тонкая, держится благодаря эпителиальным связкам, дополнительно прижимаясь стекловидным телом. Глаз применяет ее для фиксации картинки и передачи ее по зрительным нервам в мозг. В строении сетчатки различают палочковые и колбочковые клетки. Колбочковые различают цветное изображение, а палочковые отвечают за зрение в темноте, но они существенно чувствительней. При тончайшем рассмотрении сетчатка состоит из десяти слоев, различных по своему строению, причем 9 из таковых абсолютно прозрачны.

Преломление света

Главными преломляющими средами человеческого глаза являются роговица, которая обладает наивысшей преломляющей силой, и хрусталик, представляющий двояковыпуклую линзу. Преломление света в глазу проходит по основным законам, которые изучает физика.

Лучи, проходящие через центр хрусталика и роговицы (т. е. через главную глазную оптическую ось) перпендикулярно к их поверхности, преломления не испытывают. Остальные преломляются и внутри камеры глаза сходятся в единой точке – фокусе.

Такой ход световых лучей обеспечивает на сетчатке четкое изображение, причем оно получается обратным и уменьшенным.

Показатель преломления света в стекловидном теле больше единицы, поэтому фокусные расстояния во внешнем пространстве (переднее фокусное расстояние) и внутри (заднее) не могут быть одинаковы.

Оптическая сила рассчитывается в виде обратного заднего фокусного расстояния глаза, выраженного в метрах. Она зависит от того, в состоянии покоя находится орган зрения или в состоянии аккомодации.

Аккомодация — это способность четко различать предметы, которые находятся на разных расстояниях.

Заключение

Основные свойства глаза были представлены выше.

Оптическая система его является природный проектором, преломляя световые лучи и фокусируя их особым образом, сквозь хрусталик на сетчатку. Очень интересно, что картинка отпечатывается на ней в перевернутой форме. Все окружающее, что видит человеческий глаз, анализирует область мозга, отвечающая за зрительное восприятие. Именно там изображение переворачивается в привычное для человека.

Мы рассмотрели глаз как оптическую систему и оптический прибор.

Источник: https://SamMedic.ru/435671a-glaz-kak-opticheskaya-sistema-opticheskie-priboryi-stroenie-i-svoystva-glaza

Умный доктор
Добавить комментарий